
1

Presenters: Mark S. Shephard, Vijay S. Mahadevan,

 Glen Hansen and Cameron W. Smith

FASTMath Unstructured Mesh Technologies

FASTMath SciDAC Institute

2

2

Argonne National Laboratory

 Vijay Mahadevan

 Jim Jiao (Stony Brook)

 Paul Wilson (U. Wisconsin)

Lawrence Livermore National Lab.

 Barna Bihari

 Lori Diachin

Sandia National Laboratories

 Karen Devine

 Glen Hansen

 Vitus Leung

 Jake Ostien

Unstructured Mesh Technology and Application Team

Rensselaer Polytechnic Inst.

 Max Bloomfield

 Brian Granzow

 Dan Ibanez

 Qiukai Lu

 Onkar Sahni

 Seegyoung Seol

 Mark Shephard

 Cameron Smith

 Ken Jansen (U. Colorado)

 Michel Rasquin (U. Colorado)

3

3

 Unstructured mesh methods and the need for unstructured

mesh components for use by analysis code developers

 Core unstructured mesh components:

• Parallel Mesh infrastructures

• Mesh Generation, Adaptation, Optimization

• Fields

• Solution transfer

 Dynamic load balancing

 Unstructured mesh/solver developments

 Creation of parallel adaptive loops using in-memory methods

 An extendable unstructured mesh environment

 Introduction to the Hands-On Session

Presentation Outline

4

4

Advantages of unstructured mesh methods

 Easily applied to general geometries

• Fully automated procedures to go from CAD to valid mesh

 Can provide highly effective solutions

• Easily fitted to geometric features

• Easily graded

• General mesh anisotropy to account

for anisotropic physics possible

 Given a complete geometry (e.g., CAD solid model), with

analysis attributes defined on that model, the entire

simulation work flow can be automated

 Meshes can easily be adaptively modified

Unstructured Mesh Methods

5

5

Disadvantages of unstructured meshes

 Require the use of more complex data structures to describe

• More complex to program, particularly in parallel

 Although they can give the highest accuracy on a per degree

of freedom basis that takes specific care and effort

• The quality of element shapes influences solution

accuracy – the degree to which this happens a function of

the discretization method

• Poorly shaped element increase condition number of

global system – iterative solvers increase time to solve

• Require careful a priori, and/or good a posteriori, mesh

control to obtain good mesh configurations

Unstructured Mesh Methods

6

6

Goal of FASTMath unstructured mesh developments include:

 Provide component-based tools that support analysis code

developers and users to take full advantage of unstructured

mesh methods

 Develop those components to operate through multi-level

APIs that increase interoperability and ease of integration

 Address technical gaps by developing specific unstructured

mesh tools to address needs and eliminate/minimize

disadvantages of unstructured meshes

 Work with DOE applications on the integration of these

technologies with their tools and to address new needs that

arise

Unstructured Mesh Methods

7

7

 Accelerator Modeling (ACE3P)

 Climate data analysis (Par-NCL)

 Multi-tracer transport (MBCSLAM)

 FE-based neutron transport (PROTEUS)

 Fluid/Structure interaction (AthenaVMS)

 Fusion Edge Physics (XGC)

 Fusion first wall chemistry & dynamics (XOLOTL)

 Fusion Plasmas (M3DC1)

 High-order CFD on (Nektar++)

 High-speed viscous flows (FUN3D)

 Monte Carlo neutron transport (DAG-MCNP)

 Mortar element Structural Mechanics (Diablo)

 Multiphase reactor flows (PHASTA)

 SEM-based CFD (Nek5000)

 Solid Mechanics (Albany)

Applications using FASTMath

Unstructured Mesh Components

8

8

Parallel Mesh Infrastructure

Key unstructured mesh technology needed by applications

 Effective parallel mesh representation

 Base parallel functions

• Partitioned mesh control and modification

• Read only copies of types needed

• Associated data, grouping, etc.

 Key services

• Load balancing

• Mesh-to-mesh solution transfer

• Mesh optimization and adaptation

 Two FASTMath Implementations

• SIGMA and PUMI

i M
0

j M
1

1 P

0 P
2 P

 inter-process part

boundary

 intra-process part

boundary

 Proc j Proc i

9

9

Mesh part is a set of mesh entities

assigned to unique part

 Treated as a serial mesh with

part boundaries

 Part boundaries maintain links

to neighboring mesh entities

Mesh Migration

 Moving mesh entities between parts as dictated by operations

 Entities to migrate are determined based on adjacencies

 Interpart links updated based on mesh adjacencies

 Performance issues: synchronization, communications, load

balance and scalability

Parallel Mesh Based on Partitioning Mesh

10

10

Localizing off-part mesh data

to avoid inter-process

communications

 Read-only, duplicate entity

copies not on part boundary

 Copy rule: triplet (entity

dim, bridge dim, # layers)

• Entity dim: dimension for copied entities

• Bridge dim: used to define copies through adjacency

• # layers: # of layers measured from the part boundary

 E.g, to get two layers of region entities in the ghost layer,

measured from faces on part boundary – ghost_dim=3,

bridge_dim=2, and # layers=2

General Functions for Read Only Copies

11

11

Mesh Generation

 Must be able to create meshes over complex domains

 Already doing meshes approaching 100 billion elements

 High levels of automation needed to avoid meshing bottleneck

Mesh Adaptation

 Must be able to use a posteriori information to improve mesh

 Must be able to account for original geometric domain

 Want general, and specific, anisotropic adaptation capabilities

Mesh Shape Optimization

 Need to control element shapes as needed by the various

discretization methods for maintaining accuracy and efficiency

Parallel execution of all three functions critical on large meshes

Mesh Generation, Adaptation and Optimization

12

12

Need to support the definition of, and operations on, fields

defined over space/time domains

 Input fields can be defined over geometric model and meshes

 Output fields defined over meshes

 Fields are tensors and defined in terms of:

• Tensor order and symmetries

• Relationship to domain entities

• Distributions of components over entities

 Must support operations on fields including:

• Interrogations – pointwise and distributions

• Basic – integration, differentiation, projection, etc.

• Complex – mesh-to-mesh transfer, conservation, etc.

Fields and Solution Transfer

13

13

SIGMA(CGM/MOAB/Lasso/MeshKit) (http://sigma.mcs.anl.gov)

 CGM supports both open-source (OCC) and commercial

(ACIS) geometry modeling engines.

 MOAB provides scalable mesh (data) usage in applications

on >32K cores through efficient array-based access with

support for parallel HDF5 I/O format and in-situ visualization.

 MeshKit provides unified meshing interfaces to advanced

algorithms and to external packages (Cubit/Netgen).

 Components for discretization and mesh-to-mesh coupling

• CouPE provides component based multi-physics solver

capability utilizing underlying scalable solution transfers.

• PETSc – MOAB interface simplifies discretization of PDE on

unstructured meshes and solution through PETSc infrastructure.

SIGMA Unstructured Mesh Infrastructure

14

14

 Goals: Simplify geometry search and

unify discretization kernels with a flexible

interface

 Geometry search: support uniform

parallel point-in-element query for various

element topologies

(edge,tri/quad/polygon,tet/hex/prism/pyra

mid)

 Discretization: support transformations,

higher-order basis functions (lagrange,

spectral) for optimized local FE/FV

 Leverage scalable mesh (MOAB) and

solver (PETSc) structures to build a

framework (SHARP) to perform complex

nuclear reactor analysis problems.

Parallel Point Location

15

15

Parallel Point Location

4. Normalization

5. Conservation

SpatialCoupler uses “crystal-

router” for aggregated

communication and

minimizing data transferred.

16

16

Solution Transfer Scalability

 Demonstrated 70% strong scalability of the solution transfer

implementation in MOAB up to 512K cores on BG/Q.

 Points/rank = [2K, 32K] (averaged around 10K).

 Initialization costs amortized over multiple interpolations!

 Bottleneck: Kd-tree scales as O(nlog(n)); Consider BVH/BIH

trees to attain O(log(n)) time complexity.

17

17

 MOAB parallel infrastructure and dynamic moving mesh

intersection algorithm used to track multi-tracer transport.

 Implemented a scalable (linear complexity), conservative, 2-D

remapping algorithm.

 Efficient and balanced re-distribution of meshes implemented

internally with Zoltan interfaces

 Collaborative effort (ACES4BGC + FASTMath + SUPER)

Mesh Intersections + Dynamic partitioning

18

18

Distributed mesh Partition model

 Employs a complete mesh representation to provide any

adjacency in O(1) time

 Parallel control through partition model that supports

• All interprocess communications

• Effective migration of mesh entities

• Generalized read only copies

PUMI Unstructured Mesh Infrastructure

Geometric model

19

19

 Focused on supporting massively parallel evolving meshes as

needed for adaptive mesh and/or evolving geometry problems

 Used in the construction of parallel adaptive simulation loops

by combining with:

• Fully automatic parallel mesh generation from CAD

• General mesh modification to adapt meshes to control

discretion errors, account for evolving geometry

• Multiple dynamic load balancing tools as needed to

effectively load balance the steps in an evolving mesh

simulation

 Supported meshes with 92 billion elements on ¾ million cores

PUMI Unstructured Mesh Infrastructure

20

20

Unstructured meshes that effectively use high

core-count, hybrid parallel compute nodes

 A parallel control utility (PCU) that supports hybrid threading

and message passing operations on partitioned PUMI meshes

 16 threads per process on BG/Q

saves 20% of memory

• Critical for many-core nodes

where memory/core is limited

Use of Intel Phi accelerators

• On an equal number of Phi

and BG/Q nodes

 1024 → 2048 partitioning is 40% faster on Stampede

 2048 → 4096 partitioning 8% slower on Stampede

Architecture Aware PUMI

21

21

 Complete representation supports any application need

 Have made extensive use of Simmetrix meshing component

• Any combinations of CAD and triangulations

• Voxel (image) to model to mesh capabilities

• Extensive control of mesh types,

orders and layouts – boundary layer,

anisotropic, gradation, etc.

• Curved element meshes

• Parallel mesh and distributed geometry

 1B element mesh generated in

8 minutes on 256 cores

 13 billion elements on

up to 2048 cores

Mesh Generation

22

22

General Mesh Modification for Mesh Adaptation

 Goal is the flexibility of remeshing with added advantages

 Strategy

• Employ a “complete set” of mesh modification operations to

alter the mesh into one that matches the given mesh size field

• Driven by an anisotropic mesh size field that can be set by

any combination of criteria

 Advantages

• Supports general anisotropic meshes

• Can deal with any level of geometric domain complexity

• Can obtain level of accuracy desired

• Solution transfer can be applied incrementally - provides more

control to satisfy constraints (like mass conservation)

23

23

 Controlled application of mesh modification operations including

dealing with curved geometries, anisotropic meshes

 Base operators

• Swap, collapse,

split, move

 Compound operators chain single step operators

• Double split collapse operator

• Swap(s) followed by collapse operator

• Split, then move the created vertex

• Etc.

 Mesh adapts to

true geometry

 Fully parallel

 Curved element geom.

Edge collapse
Edge split face split

Double split collapse to remove sliver

Mesh Adaptation by Local Mesh Modification

24

24

 Attached Parallel Fields (APF) development underway

 Effective storage of solution fields on meshes

 Supports operations on the fields

• Interrogation

• Differentiation

• Integration

• Interpolation/projection

 Recent efforts

• Adaptive expansion of Fields from 2D to 3D in M3D-C1

• History-dependent integration point fields

for Albany plasticity models

Attached Parallel Fields (APF)

25

25

Local solution transfer during mesh adaptation

 Performed on cavity as local mesh modification performed

 Limited number of elements involved (no search over mesh)

 No accuracy loss with some operations (e.g., refinement)

 Others easier to control due to local nature (e.g., more

accurate conservation correction)

 Applied to primary & secondary variables in multiple applications

 In the metal forming case

not only was the transfer

faster, the non-linear solve

was much faster since

“equilibrium recovery”

iterations not required

Local Solution Transfer

Zone

updated

by the

operations

shaded

Before collapse after collapse

26

26

Mesh Adaptation Status

 Applied to very large scale

models – up to 92 billion

elements on ¾ million cores

 Local solution transfer

supported through callback

 Effective storage of solution

fields on meshes

 Supports adaptation with

boundary layer meshes

27

27

 Supports adaptation of

curved elements

 Adaptation based on

multiple criteria, examples

• Level sets at interfaces

• Tracking particles

• Combination of mesh

errors and element

shape evolving

geometry

Mesh Adaptation Status

28

28

 Provide the mesh infrastructure for M3D-C1

• Geometric model interface defined by

analytic expressions with B-splines

• Distributed mesh management including

 process grouping to define plane

 each plane loaded with the same

distributed 2D mesh then

 3D mesh and corresponding

partitioning topology constructed

• Mesh adaptation and load balancing

• Adjacency-based node ordering

• Mapping of mesh to PETSc structures

and control of assembly processes

Highlight: Unstructured Mesh Infrastructure for the M3D-

C1 MHD Code for Fusion Plasma Simulations

Fig: 3D mesh constructed from 64

2D planes on 12288 processes [1]

(only the mesh between selected

planes shown)

[1] S.C.Jardin, et al, Multiple timescale calculations of sawteeth and other macroscopic dynamics of

tokamak plasmas, Computational Science and Discovery 5 (2012) 014002

29

29

 EPSI PIC coupled to mesh simulation

requires high quality meshes meeting a

strict set of layout constraints

• Existing method took >11 hours and

mesh did not have desired quality

• FASTMath meshing technologies put

together to produce better quality

meshes that meet constraints

• Run time reduced by a factor of >60 to

under 10 minutes for finest mesh

 Particle-in-Cell with distributed mesh

• Current XGC copies entire mesh on

each process

• PUMI distributed mesh being extended

to support parallel mesh with particles

than can move through the mesh

Highlight: Unstructured Mesh Techniques for

Edge Plasma Fusion Simulations

30

30

Highlight: Parallel Mesh Adaptation with Curved Mesh

Geometry for High-Order Accelerator EM Simulations

 Provide parallel mesh modification

procedure capable of

creating/adapting curved mesh

geometry

 Parallel mesh adaptation procedure

developed that supports quadratic

curved meshes

 Ongoing efforts to support higher

order G1 mesh geometry

 The procedure integrated with high-

order electro-magnetic solver,

ACE3P from the SLAC National

Accelerator Laboratory

31

31

 Purpose: to rebalance load-imbalanced mesh during mesh

modification

• Equal “work load” with minimum inter-process

communications

 FASTMATH load balancing tools

• Zoltan/Zoltan2 libraries

provide multiple dynamic

partitioners with general control

of partition objects and weights

• ParMA – Partitioning using

mesh adjacencies

Dynamic Load Balancing

32

32

Initialize

Application

Partition

Data

Redistribute

Data

Compute

Solutions

& Adapt

Output

& End

 Dynamic repartitioning (load balancing) in an application:

• Data partition is computed.

• Data are distributed according to partition map.

• Application computes and, perhaps, adapts.

• Process repeats until the application is done.

 Ideal partition:

• Processor idle time is minimized.

• Inter-processor communication costs are kept low.

• Cost to redistribute data is also kept low.

Dynamic Load Balancing

33

33

Static vs. Dynamic: Usage and Implementation

Static:

 Pre-processor to

application.

 Can be implemented

serially.

 May be slow,

expensive.

 File-based interface

acceptable.

 No consideration of

existing decomposition

required.

Dynamic:

 Must run side-by-side with application.

 Must be implemented in parallel.

 Must be fast, scalable.

 Library application interface required.

 Should be easy to use.

 Incremental algorithms preferred.

• Small changes in input result small

changes in partitions.

• Explicit or implicit incrementally

acceptable.

34

34

Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection

Recursive Inertial Bisection

Multi-Jagged Multi-section

Space Filling Curves

PHG Graph Partitioning

Interface to ParMETIS (U. Minnesota)

Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning

Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications;

no single partitioner is best for all applications.

Geometric

Topology-based

35

35

Goal: Create parts containing physically close data

 RCB/RIB: Compute cutting planes that recursively bisect workloads

 MJ: Multi-section instead of bisection to reduce cost of partitioning

 SFC: Partition linear ordering given by space-filling curve

Advantages:

 Conceptually simple; fast and inexpensive

 Effective when connectivity info is not available (e.g., in particle methods)

 Enable efficient searches for contact detection, particle methods

 RCB/MJ: Regular parts useful in structured or

unstructured meshes

 SFC: Linear ordering may improve cache performance

Disadvantages:

 No explicit control of communication costs

 Geometric coordinates needed

Geometric Partitioners in Zoltan/Zoltan2

36

36

Goal: Balance work while minimizing data dependencies

between parts

 Represent data with vertices of graph/hypergraph

 Represent dependencies with graph/hypergraph edges

Advantages:

 High quality partitions for many applications

 Explicit control of communication costs

 Available tools

• Serial: Chaco, METIS, Scotch, PaToH, Mondriaan

• Parallel: Zoltan, ParMETIS, PT-Scotch, Jostle

Disadvantages:

 More expensive than geometric approaches

 Require explicit dependence info

Topology-based Partitioners

37

37

Partitioning using Mesh Adjacencies (ParMA)

Mesh and partition model adjacencies directly used

 All mesh entities can be considered

 Any adjacency can be obtained in O(1) time

 Directly account for multiple entity types – important for the

solve process – most computationally expensive step

 Avoid graph construction

 Easy to use with diffusive procedures

 Applications to Date

• Partition improvement to account for multiple entity types

and cost functions – improved scalability of solvers

• Use for improving partitions on really big meshes

38

38

ParMA – Multi-Criteria Partition Improvement

 Improved scalability of the solve by accounting for balance of

multiple entity types – eliminate spikes

 Input:

• Priority list of entity types to balance (region, face, edge, vertex)

• Mesh with entity communication, computation and migration weights

 Algorithm:

• From high to low priority if separated by ‘>’ and From low to high

dimension entity types if separated by ‘=’

 Compute migration schedule (Collective), Select regions for migration

(Embarrassingly Parallel), Migrate selected regions (Collective)

• Ex) “Rgn>Face=Edge>Vtx” is the user’s input

 Step 1: improve balance for mesh regions

 Step 2.1: improve balance for mesh edges

 Step 2.2: improve balance for mesh faces

 Step 3: improve balance for mesh vertices

39

39

Example of C0, linear shape function finite elements

 Assembly sensitive to mesh element imbalances

 Solve sensitive to vertex imbalances - they hold the dof

• Heaviest loaded part dictates solver performance

 Element-based partitioning results in spikes of dofs

 Diffusive application of ParMA knocks spikes down –
common to see 10% increase in strong scaling

ParMA Application Partition Improvement

element imbalance increased - 2.64% to 4.54% dof imbalance reduced - 14.7% to 4.92%

40

40

Predictive Load Balancing

~20 parts with > 200%

imbalance, peak

imbalance is ~430%

120 parts with ~30% of

the average load

Histogram of element imbalance in 1024

part adapted mesh on Onera M6 wing if

no balancing applied prior to adaptation.

 Mesh modification before load balancing

can lead to memory problems - common

to see 400% increase on some parts

 Employ predictive load balancing to avoid the problem

• Assign weights based on what will be refined/coarsened

• Apply dynamic load balancing using those weights

• Perform mesh modifications

Repartition

Data

Compute

Solutions

& Adapt

41

41

 Mesh metric field decomposed into orthogonal directions

(e1,e2,e3) and desired length (h1,h2,h3) in each direction.

 The volume of desired element (tetrahedron): h1h2h3/6

 Estimate number of elements to be generated:

 Load balance based on weighted graph nodes

Predictive Load Balancing - Algorithm

42

42

Dynamic Load Balancing to Ensure the Ability of

Applications to Achieve and Maintain Scalability

 Results/Impact

• Zoltan’s MJ provides scalable

partitioning on up to 524K cores

in multigrid solver MueLu

• ParMA improves PHASTA CFD

code scaling by balancing

multiple entity types

• Predictive load balancing

increases performance of

parallel mesh adaptation

• Multi-level/multi-method

partitioning enables partitioning

of 92B-element mesh to 3.1M

parts on ¾ million cores

Reduced data movement in MultiJagged partitioner

enables better scaling than Recursive Coordinate

Bisection on NERSC’s Hopper.

0	

2	

4	

6	

8	

10	

12	

14	

1	 24	 96	 384	1536	6144	

MJ	

RCB	

Number of cores

E
x

e
c

u
ti

o
n

 t
im

e

n
o

rm
.

w
rt

 S
e

ri
a

l
R

C
B

For very little cost, ParMA improves application

scalability by dramatically decreasing vertex

imbalance while maintaining element balance.

43

43

 Partition with respect to the machine hierarchy

• Network, nodes, cores

• Improved data locality

in each level

 Example: Matrix-vector

multiplication with 96 parts

on Hopper

• Reduced matvec time

by partitioning with

respect to nodes,

then cores

Hierarchical Partitioning in Zoltan

G3-
Circuit

Thermo-
mech_TC

Parabolic
_FEM

Bmw7st
_1

#rows 1.6M 102K 526K 141K

#nonzeros 7.7M 712K 3.7M 7.3M

Matvec time normalized wrt flat 96-part partition

 flat 96 cores

 hierarchical 4 nodes x 24 cores/node

44

44

Goal: Assign MPI tasks to cores so that application communication costs are low

 Especially important in non-contiguous node allocations (e.g., Hopper Cray XE6)

Approach: Use Zoltan2’s MJ geometric partitioner to map interdependent tasks to
“nearby” cores in the allocation

 Using geometric proximity as a proxy for communication cost

Example: Task Placement in Finite Difference Mini-app MiniGhost (Barrett et al.)

 Communication pattern: 7-pt stencil

 Mapping methods:

• None: default linear task layout
(first in x, then y, then z)

: accounts for Cielo’s
16 core/node architecture

• Geometric: also accounts for proximity
of allocated nodes in network

 On 64K cores of Cielo, geometric mapping
reduced MiniGhost execution time

• by 34% on average relative to default

• by 24% relative to custom 2x2x4 task-grouping

Architecture-Aware Geometric Task Placement in Zoltan2

45

45

Need to effectively integrate parallel mesh infrastructures with

unstructured mesh analysis codes

 Two key steps in unstructured mesh analysis codes

• Evaluation of element level contributions – easily supported

with FASTMath partitioned mesh infrastructures support

mesh level information including link to geometry

• Formation and solution of the global equations – interactions

needed here are more complex with multiple alternatives

Two FASTMath activities related to mesh/solver interactions

 MOAB-based Discretization Manager (DM) linked with the

PETSc solver library

 PHASTA massively parallel unstructured mesh code including

integration with PETSC

Unstructured Mesh/Solver Developments

46

46

Need uniform interface to solve multi-component problems on

unstructured meshes with FD/FEM/FVM on both structured

and unstructured meshes.

 Create a native MOAB implementation that exposes the

underlying array-based mesh data structures through the

DM (Discretization Manager) object in PETSc (DMMoab)

 Discretize the physics PDE described on MOAB mesh while

leveraging the scalability of PETSc solvers.

 Provide routines to build simple meshes in-memory or load

an unstructured grid from file.

 Analyze efficient unstructured mesh traversal, FD/FEM-type

operator assembly for relevant problems in multi-

dimensions.

MOAB Discretization Manager

47

47

 Provides ability to discretize physics PDE with FEM/FD based

on a native MOAB mesh leveraging scalable PETSc solvers.

 Design resembles structured (DMDA) and unstructured

(DMPlex) interfaces; software productivity.

 Support both strided and interleaved access of field

components; Opens up better preconditioning strategies.

 Analyze efficient unstructured mesh traversal, FD/FEM-type

operator assembly for relevant problems in multi-dimensions.

 Optimized computation of physics residuals using PETSc Vec

that reuses the contiguous memory provided by MOAB tags.

 Capabilities to define field components, manage degrees-of-

freedom, local-to-global transformations.

 The implementation is part of the latest PETSc 3.5 release (DM)

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html

MOAB Discretization Manager

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html

48

48

 Motivator: PSI (Plasma Surface Interactions) project for

integration with XOLOTL code.

• Utilize underlying array-based mesh data structures to perform

high-order multi-component solver based on PETSc.

• Reduce total memory use by sharing vector spaces and allowing

block filling of coupled component terms in the linear operator.

• Fast stiff ODE-solvers for reaction-diffusion equations via IMEX

methods (PETSc) that can accommodate sparse coupling

between the components.

 Some relevant tutorial examples in PETSc:

• Multi-component 1-d time-dependent Brusselator reaction-

diffusion PDE FEM solver in 1-d. (ts/examples/tutorials/ex35.c)

• A 2-D, verifiable Diffusion-Reaction FEM steady state solver.

(ksp/ksp/examples/tutorials/ex35.c)

MOAB Discretization Manager – Examples

49

49

Implicit, Adaptive Grid CFD

 Extreme Scale Applications:

• Aerodynamics flow control

• Multiphase flow

 Full Machine Strong scaling

• Variable MPI processes/core

• 92 Billion tetrahedra

• 262144 to 3,145,728 parts

• 1/core 100% scaling

• 2/core 146-155% scaling

• 4/core 178-226% scaling

Massively Parallel Unstructured Mesh Solver (PHASTA)

0.00

0.50

1.00

1.50

2.00

2.50

256 512 768

S
c
a

li
n

g

K cores

92 billion tetrehedra

1 mpi/core

2 mpi/core

4 mpi/core

50

50

 PETSc functions assemble

LHS and RHS

 PETSc MatAssembly performs

additional step of building globally

complete matrix

 Relative efficiency depends on solve

tolerance – tighter tolerances more

efficient with PETSc

 Multiple processes per core

currently benefit native solver

more than PETSc

 MatAssembly times identified as a

scaling bottleneck to be improved

PHASTA/PETSc Coupling

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

8	 16	 32	 64	 128	

m
e
	(
se
co
n
d
s)
	

K	Cores	

Equa on	Solu on	Time	(32	dB	NL	Residual	Reduc on)	

PETSc	1mpi/core	

PETSc	2mpi/core	

PETSc	4mpi/core	

Na ve	1mpi/core	

Na ve	2mpi/core	

Na ve	4mpi/core	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

8	 16	 32	 64	 128	

m
e
	(
se
co
n
d
s)
	

K	Cores	

Equa on	Solu on	Time	(45	dB	NL	Residual	Reduc on)	

PETSc	1mpi/core	

PETSc	2mpi/core	

PETSc	4mpi/core	

Na ve	1mpi/core	

Na ve	2mpi/core	

Na ve	4mpi/core	

51

51

 Automation and adaptive methods

critical to reliable simulations

 Users want flexibility to apply best

in class analysis codes

• Component-based approach to

integrate automated adaptive

methods with analysis codes

• All components operate in

parallel, including fast in-

memory coupling

 Developing parallel adaptive loops

for DOE, DoD and industry using

multiple analysis engines

Creation of Parallel Adaptive Loops

t=0.0

t=2e-4

t=5e-4

52

52

Parallel data and services are the core

 Abstraction of geometric model

topology for domain linkage

 Mesh also based on topology –

it must be distributed

 Simulation fields distributed over

geometric model and mesh entities

 Partition control must coordinate

communication and partition updates

 Dynamic load balancing required at multiple steps in the

workflow to account for mesh changes and application needs

 Providing parallel data as services with various combinations

of FASTMath and other parallel mesh components

Creation of Parallel Adaptive Loops

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

 Partition Control

53

53

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Physics and Model Parameters Input Domain Definition with Attributes

Mesh-Based
Analysis

Complete
Domain

Definition

Mesh Generation
and/or Adaptation

Postprocessing/
Visualization

Solution
Transfer

Correction
Indicator

PDE’s and
discretization
methods

Solution transfer constraints

mesh with fields

mesh with
fields

 calculated fields

mesh size
 field

meshes
and fields

meshing

operation geometric
 interrogation

Attributed
 topology

non-manifold
model construction

geometry updates

mesh size
field

mesh

 Partition Control

Components in Parallel Adaptive Analysis

54

54

File transfer a serious bottleneck in parallel simulation workflows

 All core parallel data and services accessed through APIs

 In-memory integration approach uses APIs

• Migration from file-based components to in-memory

Modify/extend components by wrapping data structures
with APIs for:

 read/write

memory management

 inter-language coupling; typically FORTRAN and C

 In-memory has far superior parallel performance

In-Memory Coupling of Simulation Components

55

55

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Physics and Model Parameters Input Domain Definition with Attributes

PHASTA

Parasolid
or

GeomSim

MeshSim and
MeshSim Adapt

Paraview

Solution
Transfer

Hessian-based
error indicator

NS, FE
Level set

Solution transfer constraints

mesh with fields

mesh with
fields

 calculated fields

mesh size
 field

meshes
and fields

meshing

operation geometric
 interrogation

Attributed
 topology

non-manifold
model construction

geometry updates

mesh size
field

mesh

 Partition Control

Adaptive Active Flow Control

56

56

Case\AoA
(L/D)

14 Up 14 Down

Baseline 10.2236 3.2286

Forced 10.6265 9.9921

	

Dynamic pitch with angle of attack of 140 ± 5.50

• Slab model – pitch rate of 10Hz

• Baseline (without jets) and forced/controlled

(with jets)

Jets cause

significant

difference

15 m/s

Leading-edge synthetic

jets: 5 along span

Adaptive Active Flow Control

57

57

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Injection Process Control Input Domain Definition with Attributes

PHASTA

Parasolid
or

GeomSim

MeshSim and
MeshSim Adapt

Paraview

Solution
Transfer

Hessian-based
error indicator

NS, FE,
Level set

Solution transfer constraints

mesh with fields

mesh with
fields

 flow fields,
zero level set

mesh size
 field

meshes
and fields

meshing

operation geometric
 interrogation

attributed

 topology

non-manifold
model construction

mesh size
field

mesh

 Partition Control

Adaptive Two-Phases Flow

58

58

• Two-phase modeling using level-sets

coupled to structural activation

• Adaptive mesh control –

reduces mesh required

from 20 million elements

to 1 million elements

Adaptive Two-Phases Flow

59

59

Aerodynamics Simulations

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

High speed flow scenarios Parasolid

FUN3D from
NASA

Parasolid
or

GeomSim

MeshSim and
MeshSim Adapt

Paraview

Solution
Transfer

Goal oriented
error estimator

NS,
Finite volumes

Mass conservation

mesh with fields

mesh with
fields

 flow fields

mesh size
 field

meshes
and fields

meshing

operation geometric
 interrogation

attributed

 topology

non-manifold
model construction

mesh size
field

mesh

 Partition Control

60

60

Application Result - Scramjet Engine

Initial Mesh

Adapted Mesh

61

61

Electromagnetics Analysis

62

62

Adaptation based on

• Tracking particles

• Discretization errors

Full accelerator models

• Approaching 100 cavities

• Substantial internal structure

• Meshes with several
hundred million high-
order curved elements

High-Order EM Coupled with PIC

63

63

Structural Analysis for Integrated Circuits

64

64

Must construct 3-D non-manifold solid from input geometry

 Input domain defined in terms of 2-D layouts (gdsII/OASIS)

 Third dimension based on process knowledge

 A component has been developed to construct the model

Adaptive loop constructed for thermally loaded case including

thin liner

Structural Analysis for Integrated Circuits

Model of liner film only

65

65

Combination of the FASTMath unstructured mesh technologies

with the Albany multiphysics analysis code

 A finite element development environment containing

building blocks needed for rapid deployment and prototyping

 A mechanism to drive and demonstrate Agile Components

rapid software development vision and use template-based

generic programming for the construction of analysis tools

 A Trilinos demonstration application. Albany uses ~98 Sandia

packages/libraries.

 Provides an open-source computational mechanics

environment and serves as a test-bed for algorithms under

development by the Laboratory of Computational Mechanics

(LCM) destined for Sandia's production codes

An Extendable Unstructured Mesh Environment

66

66

Albany – Agile Component Architecture

Main

PDE Assembly

Nonlinear Solvers

Field Manager

Discretization

Albany

Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Analysis Tools

Iterative

Linear Solvers

 Multi-Level

Mesh Tools

Mesh

Adapt

PUMI

Problem
Discretization

ManyCore Node

Multi-Core

Accelerators

Application

Linear Solve

Input Parser

Node Kernels

Libraries

Interfaces

PDE Terms

Load

Balancing

67

67

Parallel, 3D Unstructured-grid FEM, Implicit,

Robust, Verified, Tested, PDE code written ~1 year:

• Uses dozens of libraries from Trilinos

• Scalable Multi-level linear solves (ML)

 Convergence Study to 1.1B unknowns; 16K cores

 Weak Scaling: 4096x size; 2.1x time

• Robust nonlinear solves (NOX); adjoints in progress

• Same code base as PAALS adaptivity work

Linked to Dakota

 for UQ and Calibration

 (KLE  PCE  MCMC)

Integrated Technologies Highlight:

PISCEES BER SciDAC: 1. Albany/FELIX

Greenland Ice Sheet

Surface Velocities

68

68

Albany/FELIX Parallel Scaling

Weak scaling: Greenland

ice sheet 8km-500m

resolution

Relative

speedup

(comparison to

64 core

baseline)

Strong

scaling

Courtesy of: Irina Kalashnikova (SNL)

69

69

Adaptive simulations of finite deformation

plasticity with Albany

 Projects include modeling large

deformations and weld failures

Efforts on adaptive loops that supports

 Solution accuracy via error estimation

• General error estimation library effort

 High quality element shapes at all load steps

 Accurate solution transfer of state variables

 Predictive load balancing (ParMA, Zoltan)

at each adaptive stage

 Expect to add adjoint capabilities for goal

oriented error estimation, UQ, Optimization

Modeling Large Deformation Structural Failures

70

70

Microelectronics processing is very exacting and mechanical

responses impact reliability and manufacturability

 Multi-layer nature of chips interacts with temperature swings,

creep, and intrinsic stress of films

 Intrinsic stress in film deposited onto surface and into features

causes macroscopic deflection of wafer

 Creep occurs in solder joints during use,

delamination during cool-down

 Developing combined constitutive model

of thermoelastic, plastic, and creep

contributions in ALBANY

Mechanical Failures in Integrated Circuits

Displacement vs time

curves for combined

thermo-elastic, plastic,

and creep model.

71

Two tracks:

• Using SIGMA tools to construct mesh and its

discretization for solving 2-D Laplacian

• Workflow demonstration using

Simmetrix/PUMI/PAALS for parallel adaptive

simulations

FASTMath Unstructured Mesh Hand-On Session

FASTMath SciDAC Institute

72

ATPESC 2014

Vijay Mahadevan

Tutorial Session for

Scalable Interfaces for Geometry and Mesh based

Applications (SIGMA)

FASTMath SciDAC Institute

73

73

 Capabilities: Geometry and Mesh (data) generation/handling

infrastructure with flexible solver interfaces.

SIGMA: Introduction
Website: http://sigma.mcs.anl.gov

 CGM supports both open-source (OCC) and commercial (ACIS) geometry

modeling engines.

 MOAB provides scalable mesh (data) usage in applications through efficient

array-based access; Support parallel I/O, visualization.

 MeshKit provides unified meshing interfaces to advanced algorithms and to

external packages (Cubit/Netgen).

 PETSc – MOAB interface simplifies efficient discretization and solution of PDE

on unstructured meshes with FEM.

74

74

 To utilize the SIGMA tools effectively, follow workflow to

solve a simple 2-D Laplacian on a square mesh (unit cube).

Example 1: HelloParMOAB

 Introduction to some MOAB objects and load mesh from file

Example 2: LargeMesh

 Generate d-dimensional parallel mesh with given partition/element

information (HEX/TET/QUAD/TRI)

 Define Tags on entities (vertex or elements)

 Write to file in parallel with partition

Example 3: GetEntities

 Query the parallel mesh to list the entities of various dimensions

(elements, faces, edges, vertices)

 Get entities and report non-vertex entity connectivity and vertex

adjacencies.

SIGMA Tutorial

75

75

Example 4: DMMoab Laplacian Solver

 Introduction to some DMMoab concepts

 Create DMMoab from file loaded

 Define field to be solved

 Setup linear operators and PETSc objects

 Solve linear operator

 Output and visualize

 Please consult the SIGMA website for help on examples.

http://sigma.mcs.anl.gov/sigma/atpesc2014

 All other MOAB questions can be directed to

moab-dev@mcs.anl.gov

SIGMA Tutorial

76

Presenters: Cameron W. Smith and Glen Hansen

Workflow demonstration using

Simmetrix/PUMI/PAALS for parallel adaptive

simulations

FASTMath SciDAC Institute

77

77

Hands-on Exercise Outline

 Parallel Mesh Generation

• Generate a 13M element mesh on

128 cores using Simmetrix tools

• Complex geometric model of vehicle

suspension upright

• In-memory conversion to SCOREC

mesh data structures

 Partition via Zoltan

• ParMetis multi-level

graph-based method

• Partition to 512 parts

on 128 cores

78

78

Hands-on Exercise Outline

 PAALS

• In-memory parallel adaptive loop

using a plastic deformation model

on upright model

• Running on 1024 cores

• Combining

 Parallel Mesh Adapt

 Quadratic mesh elements

 SPR based error estimation

 Local solution transfer of history

dependent state variables

 Predictive load balancing

 Visualization with ParaView

79

79

 Hands-on exercise

• https://github.com/gahansen/Albany/wiki/PAALS-Tutorial

 Capabilities:

• Agile Component-based, massively parallel solution adaptive

multiphysics analysis

• Fully-coupled, in-memory adaptation and solution transfer

• Parallel mesh infrastructure and services

• Dynamic load balancing

• Generalized error estimation drives adaptation

 Download:

 Albany (http://gahansen.github.io/Albany)

 SCOREC Adaptive Components (https://github.com/SCOREC)

 Further information: Mark Shephard [shephard@rpi.edu]

Glen Hansen [gahanse@sandia.gov]

Parallel Albany Adaptive Loop

with SCOREC

